Page 1

<u>DIRECTIONS</u>: Expand each logarithm in terms of $\log_2 M$ and $\log_2 N$.

1. $\log_2(MN)^4$ $4 \log_2 M + 4 \log_2 N$ **3.** $\log_2(\frac{M}{N})^7$ $7 \log_2 M - 7 \log_2 N$ **4.** $\log_2 \frac{1}{MN}$ $-\log_2 M - \log_2 N$ **5.** $\log_2 (\frac{M}{N})^7$ $-\log_2 M - \log_2 N$

<u>DIRECTIONS</u>: Use the facts that $\log 9 \approx 0.95$ and $\log 2 \approx 0.30$ (accurate to two decimal places) to find the following.

5. $\log \frac{9}{2}$	 6. log √2 .15
7. $\log 36$ 1.55 9. $\log \frac{1}{2000}$ -3.30 <u>DIRECTIONS</u> : Condense these expressions into expressions (and remember that $1 = \log 1$	
11. $\log x - 4 \log y$ $\log \frac{x}{y^4}$ 13. $\log_5 x - \log_5 y + 2$ $\log_5 \frac{25x}{y}$ <u>DIRECTIONS</u> : Simplify.	12. $\log_5 M - \frac{1}{4} \log_5 N$ $\log_5 \frac{M}{N^{1/4}}$ or $\log_5 \frac{M^4 \sqrt{N^3}}{N}$ 14. $\frac{1 + \log_9 x}{2}$ $\log_9 3\sqrt{x}$
15. $2 \log 5 + \log 4$ 2 17. $\log_4 40 - \log_4 5$ $\frac{3}{2}$	16. $2 \log_3 6 - \log_3 4$ 2 18. $\log_4 3 - \log_4 48$ -2